Complex Trig Equations in Standard form and A + Bi Forms
z = r(cos θ + i sin θ)
z = a + bi then
) + i sin(θ
+ θ
+ θ
Product
z
z
= r
r
[cos (θ
)]
1
2
1
2
1
2
1
2
) + i sin (θ
- θ
- θ
Quotient
z
/z
= (r
/r
)[cos (θ
)]
1
2
1
2
1
2
1
2
Express answer in standard form:
2) Divide to find z 1 /z 2 if z 1 = 24(cos 300° + i sin 300°) and z 2 = 8(cos 75° + i sin
75°).
3)
[3(cos (p/3) + i sin (p/3) )][4(cos (p/6) + i sin (p/6) )]
4)
2(cos 120 + i sin 120)
4(cos 40 + i sin 40)
5)
[.5(cos 100 + i sin 100)][.8(cos 300 + i sin 300)]
6)
[3(cos 50 + i sin 50)][3(cos 50 + i sin 50)]